
 

 

 

 

 

 

 

 

 

 

Introduction to Data Binning 
 

This guide provides a detailed introduction  
to the automated binning of data. 
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Data Binning 
Data binning, also known variously as bucketing, discretization, categorization, or quantization, is a way 
to simplify and compress a column of data, by reducing the number of possible values or levels 
represented in the data. For example, if we have data on the total credit card purchases a bank customer 
has made in the last month we may prefer to maintain this information in approximate intervals such as: 
zero, up to $10, $10-$100, $100-$500, etc. The categorization can be extremely fine, for example, if we 
were to simply round card purchases to the nearest dollar, or coarse, as exemplified above. The 
motivations for binning include: 
♦ Preparation of data for learning machines that require binned data 

♦ Protection against minor data errors 

♦ Protection against outliers 

♦ Vehicle for handling missing values (missings are assigned a special bin) 

♦ Simplification, summarization, and reporting 

SPM® leverages essential features of the CART® decision tree to deliver a variety of ways to discretize 
data. SPM discretization can be performed for either continuous or categorical data, and for either 
numeric or textual data. 

Types of Discretization 
SPM includes several ways to process continuous variables into their discrete counterparts.  This process 
is often carried out as a first step toward making them more suitable for the modeling stage.   

Simple or Naïve  

Available only for continuous variables, simple discretization groups similar values of the data together, 
assigning all members of a group or level the same mean value. Thus, if we had a group of records each 
with credit card purchases of between $0.01 and $5.00 we would assign all records the same mean value 
(possibly something like $2.50). The groupings are defined automatically following one of two rules: 
♦ Equal Fraction of Data (e.g. 10% of the data in each of 10 bins) 

♦ Equal Quantitative Ranges (intervals of equal width, e.g. $500) 

The analyst needs to decide only on the number of intervals to be created. 

Self-Guided via CART 

Available only for continuous variables, the discretization is accomplished via CART to determine the 
optimum groupings and interval widths. The method underlying Self-Guided CART binning is explained 
here via an example. Let’s say that you want to bin a continuous variable X. Behind the scenes we 
construct a CART regression tree with X as the target variable and an identical copy of X as the sole 
predictor. Each record will fall into a terminal node and then the X_FILLED value is the predicted value in 
the CART tree (remember that in CART regression tree the predicted value is the average of the target 
variable in a terminal node). The X_BIN value is a whole number representing simply a bin number. 0 is 
always used to represent missing values; otherwise, the numbers will simply go from 1 to K, where K is 
hoped to be close to the number of bins you requested. The bins will be ordered with 1 representing the 
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lowest values and K the highest values. Note: each bin value corresponds to a terminal node in the CART 
tree. The key user controls are: 
♦ Minimum bin size: No bin may contain fewer than a specified number of learn sample records 

♦ Desired number of bins: The number of bins the analyst specifies. There is no guarantee that SPM 
can create a binning with exactly the number of bins desired but SPM attempts to get close. 

♦ More or Fewer: If the desired number of bins are not available should we generate the closest 
available binning with MORE or FEWER bins? 

Supervised Binning Via CART 

Available for both continuous and categorical variables. The method requires a target variable to 
“supervise” the binning. Typically, this supervisory variable would be the variable serving as the ultimate 
target for the analysis being undertaken, but it could be any variable selected by the analyst. This style of 
binning is inspired by credit risk scorecard construction methods. Behind the scenes we run a series of 
CART models all of which have the same target and include just one of the predictors listed on the model 
setup dialog (also known as the KEEP list). If the KEEP list contains 200 predictors then we will run 200 
CART trees. Each tree is pruned to a size equal to the number of bins requested, or as close to that 
number as possible if the CART tree sequence does not support an exact match. If an exact match is not 
possible we use the next smaller or the next larger number of bins following the preference you have 
indicated when the binning run was set up. 

The binning is governed by the same controls listed above for self-guided binning: minimum bin size, 
desired number of bins, and preference for more or fewer bins when an exact match is not possible. In 
addition, for supervised binning we offer a FILL option which determines precisely what information is 
stored in the binned representation of the raw data. FILL is discussed below.  

Binned Variables Created 

Normally one would run the data binning process with the goal of saving a new data set containing the 
transformed versions of the variables. The process will typically save three versions of the input data 
variables: 
♦ Original variable: this is just a copy of what you started with 

♦ Variable_BIN: this is a whole number representing simply a bin number. 0 is always used to represent 
missing values; otherwise, the numbers will simply go from 1 to K, where K is hoped to be close to 
the number of bins you requested. The bins will be ordered with 1 representing the lowest values and 
K the highest values.   

♦ Variable_FILLED: this is a proper numeric representation of the original variable. By default, each bin 
will have been filled with the mean value of the variable for the learn sample records falling into that 
bin. 

SPM offers the option of filling the _FILLED version of the data with something other than the mean value 
of the records in the bin. First, instead of filling with the means of the original source variable you could 
substitute instead the mean of any other variable available. Thus, you might elect to fill with the mean of 
the target variable. Second, you could fill with “weights of evidence” (WOE) values, which are related to 
Naïve Bayes quantities. For a given variable X we look at each bin to determine how common that bin is 
for the two groups defined by the dependent variable Y. For example, suppose that among the subset of 
data for which the target Y=1, 40% of the learn data fall into a specific bin, while for the Y=0 group the 
fraction falling into that bin is just 20%, then the WOE is based on the ratio 40/20. A way of looking at this 
is to say that knowing that a record falls into a bin in question tells us that this would have been far more 



Salford Predictive Modeler® Introduction to Data Binning 

 5 

likely for a record with Y=1. WOE encoding has been common practice in credit risk scorecard 
development as a data preprocessing step prior to building a predictive model (say, with logistic 
regression). 
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Working Examples: 

We start with the GOODBAD.CSV data set included with the installation package. This data set is quite 
small but will serve our purposes. 

 

We also click on the [Stats] button to reach the next dialog, where we select “Detailed Stats and Tables” 
and we make sure that all variables have been selected for reporting (by clicking on the “Include” column 
header and the “Select Vars” box below). Then we click on the [OK] button. 
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Here we are principally interested in the highlighted “N Distinct” column which displays the number of 
unique data values found for each variable. The CREDIT_LIMIT variable is a prime candidate for binning 
with 281 distinct values, as is INCOME with 352 values. We may or may not be interested in binning 
variables such as EDUCATION$ with only a handful of values, but if we want to make use of the FILL and 
CODING features of SPM Binning we will still need to pass the variables though the binning process. 

Next we start with METHOD=SIMPLE binning. All we need to do is to specify the number of bins we are 
looking for the variables we are most concerned with. (The variables with just a few levels will probably 
end up with one bin for each original value). There is a literature with some fairly complex methods for 
determining the “optimal” number; for every day purposes we often see practitioners using between 10 
and 20 bins and for now we will stick with a number in this range. 
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Observe that in the Binning setup dialog we have opted for 16 bins (if possible), using the “Equal Data 
Fraction” policy for constructing the bins (1/16 will put about 6.25% of the data in each bin). For our data 
set, that will be about 40 records per bin if we use all the data. We also requested the “Long” form of 
reporting and we specified an output data set to save the results. 

  

We click the [Save] button to complete this dialog and return to the Binning setup. 

Finally, we need to decide whether to use all the data or to use some testing method and it is reasonable 
to go with no test method. After clicking the [Start] button we will arrive at the following summary which 
reports on the number of bins actually constructed: 
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Variables with fewer than 16 levels are left alone and those with more are reduced to fewer levels. 
Observe that AGE, originally with 39 distinct levels is reduced to 17 instead of 16 due to the technicalities 
of the CART tree sequence generated (the sequence includes an option for 17 but not for 16 terminal 
nodes – or bins). For more detailed information we need to turn to the classic output window: 

 

Each variable has a hyperlink pointing to table with binning details. For the variable AGE we did get the 
16 bins requested plus one extra for the missing values; the latter of course will have a size determined 
by the data. We see for bin number 1 the mean age is almost 20 with a maximum of 22 and a surprise 
minimum of 9 (probably a data error). The remaining bins are relatively narrow, with many comprising just 
one age value. A similar table will be created for every variable in the data set, or for every variable 
checked in the predictor column in the model setup dialog. 

Starting with a simple binning can be a very useful way to summarize the data and can be thought of as a 
tabular histogram. We could readily have requested fewer bins to obtain an even more compact 
summary. 

Now, we move on to CART-based binning, which will not necessarily give us such even bins, but may do 
a better job of grouping very similar values together. 
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Note the highlighted areas in the screen shot. We have opted for just 10 bins maximum for any variable 
having requested 10 or fewer. The binning method is CART and “self-guided” and we will save the 
resulting output data set to location and with a name of our choosing. (If you click on the [Save Output 
As..] button the dialog for naming and saving will be displayed). 

Example Binning for CREDIT_LIMIT: 
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Opening the saved data set and opting to view it, you can see the data set details (you could readily open 
the .CSV data set in any spreadsheet such as Excel or OpenOffice). Here, we used Excel and selected 
specific columns to show: 

 

Observe that for every variable binned we now have three variables: the original, a categorical version 
containing just a bin number, and a “filled” version with a real value corresponding to each bin. Thus, the 
first line of the dataset has a record with an actual credit limit of 19387, which is assigned to bin number 
four (in the variable CREDIT_LIMIT_BIN) and a common bin credit limit of 17989.6.  

At the end of the classic output we produce some handy commands for later use as it can be useful to 
experiment with alternative versions of your predictors. The saved KEEP lists make it easy to specify 
models consisting of (a) original variables, (b) categorical bins, or (c) compressed versions of the original 
predictors reduced to a smaller number of possible values. There may be situations in which the 
compressed versions are not only more convenient but also perform better. 
 
REM Source variables: 
KEEP AGE,CREDIT_LIMIT,GENDER,HH_SIZE,INCOME,N_INQUIRIES,NUMCARDS,OCCUP_BLANK, 
      TIME_EMPLOYED,POSTBIN 
  
REM Bin assignments: 
KEEP AGE_BIN,CREDIT_LIMIT_BIN,GENDER_BIN,HH_SIZE_BIN,INCOME_BIN, 
      N_INQUIRIES_BIN,NUMCARDS_BIN,OCCUP_BLANK_BIN,TIME_EMPLOYED_BIN, 
      POSTBIN_BIN 
 
REM Binned variables: 
KEEP AGE_FILLED,CREDIT_LIMIT_FILLED,GENDER_FILLED,HH_SIZE_FILLED,INCOME_FILLED, 
N_INQUIRIES_FILLED,NUMCARDS_FILLED,OCCUP_BLANK_FILLED, 
      TIME_EMPLOYED_FILLED,POSTBIN_FILLED 
 

To use these variables you will need to open the dataset you just saved within SPM. Immediately after 
running a binning operation you remain attached to your original unbinned data. This is desirable as you 
may want to save several different binning versions of your data before moving on to working with your 
processed versions of the data. 
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Binning supervised by CART is perhaps the most interesting variation offered in SPM binning. A similar 
method, but without the benefit of CART, is well known in credit risk scorecard construction where it has 
been used for decades. The idea is to construct bins in a predictor X while reviewing the ratio of “goods” 
to “bads” in each bin. The credit risk methodology, now also widely used in insurance and other 
industries, is an essentially manual, trial and error process, with a goal of producing a transformed 
version of the predictor. In SPM, the methodology is enhanced by letting CART search for optimal bin 
boundaries. 

 

To set up this style of binning (and optionally coding) select the indicated options on the Binning tab. 
Remember that we are now doing supervised binning, via CART, and therefore need a supervising 
variable. A convenient way to do this is to select a TARGET variable on the Model Setup dialog. We also 
recommend identifying the “Focus” class – the class label for the event we are interested in (usually the 
rare class). We complete the setup on the Binning tab, where we have indicated that we want Weights of 
Evidence (WOE) encoding in the bins, using the target variable to do the “filling”. When saving several 
variations of binning we will want the binned versions of the variables to have distinct names. The Suffix 
field allows us to customize the names to keep track of our experiments. Observe that we have also 
requested Naïve Bayes tables. 



Salford Predictive Modeler® Introduction to Data Binning 

 13 

 

Clicking the [Start] button initiates the process, which generates a fair bit of output. First, we see the 
overall Summary which reports the number of bins constructed for each variable and the number of 
records used to construct the binning. Differences in record counts are due entirely to missing values as 
missing values are automatically assigned to their own bin after the CART model is completed using the 
good values. Remember, each model contains only one predictor and is of the form MODEL Y=X. With 
no surrogate splitters we would only muddy the waters if we allowed the records missing on the predictor 
X to enter the CART Decision Tree analysis. 
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Binning Tab Specifics 
This section describes the options available on the Binning tab and the commands that are consequently 
executed. 

 

Model Setup Summary 

Shows a brief summary of the configuration on the Model tab. Only variables marked as predictors will be 
binned.  

 

 The target variable specified on the Model tab has no effect on binning. It is printed in the Current 
TARGET Variable window for reference purposes only.  
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Number of Bins 

 

 AUTOMATE BIN IDEALBINS=<n>, PREFER=<MORE|FEWER> 

There is no guarantee that SPM can create a binning with exactly the number of bins desired but we 
attempt to get close. If the desired number of bins is not available, you can control whether we should 
generate the closest available binning with MORE or FEWER bins. 
 You cannot create more bins than number of levels of a variable. 

 AUTOMATE BIN SMALLESTBIN=<n> 

Sets a lower bound on the size of a bin. No bin may contain fewer than this number of learn sample 
records. 

Report 

 

 AUTOMATE BIN REPORT=<LONG|SHORT> 

If Long is selected, additional information about binned variables will be printed to the Classic Output.  

Generate NAÏVE BAYES tables 

 

 AUTOMATE BIN NAIVEBAYES=<YES|NO> 

Will estimate a Naïve Bayes model if the supervise and fill variables are categorical. The results are 
printed to the Classic Output.  
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Binning Method 

Determines the type of discretization.  

 

Sections below provide details on each of the available types.  

Simple or Naïve (Equal Data Fraction or Equal distance/spacing) 

 AUTOMATE BIN METHOD=EQUALFRACTION|EQUALWIDTH 

Available only for continuous variables, simple discretization groups similar values of the data together 
and assigns all members of a group the same mean value. Thus, if we had a group of records each with 
credit card purchases of between $0.01 and $5.00 we would assign all records the same mean value 
(possibly something like $2.50). The groupings are defined automatically following one of two rules: Equal 
Fraction of Data rule (e.g. 10% of the data in each of 10 bins). 
♦ Equal Fraction of Data (e.g. 10% of the data in each of 10 bins) 

♦ Equal Quantitative Ranges (intervals of equal width, e.g. $500) 

The analyst needs to decide only on the number of intervals to be created. 

Self-Guided via CART (CART-based) 

 AUTOMATE BIN METHOD=CART 

Available only for continuous variables. The discretization is accomplished via CART to determine the 
optimum groupings and interval widths. The variable being binned is used as the dependent variable for 
the model. 

Supervised Binning Via CART (Supervised by) 

 AUTOMATE BIN METHOD=CART SUPERVISE=<variable> 

Available for both continuous and categorical variables. Typically, this supervisory variable would be the 
variable serving as the ultimate target for the analysis being undertaken, but it could be any variable 
selected by the analyst. This style of binning is inspired by credit risk scorecard construction methods. 
Behind the scenes we run a series of CART models, all of which have the same target and include each 
variable being binned as a single predictor. If we are binning 200 variables then we will run 200 CART 
trees. Each tree is pruned to a size equal to the number of bins requested, or as close to that number as 
possible. If an exact match is not possible we use the next smaller or the next larger number of bins 
following the preference you have indicated when the binning run was set up. 
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Fill variable 

 AUTOMATE BIN FILL=<variable> 

With Variable that fills the binned values and guides WOE encoding you can control which variable 
will be used for the construction of Variable_FILLED in the output dataset. By default, SPM will use the 
mean value of the learn records of the variable being binned. You could substitute it with the mean of any 
other variable available.  

 

 You might elect to fill with the mean of the target variable. 

Coding 

 AUTOMATE BIN CODING = <MEAN|WOE>, GROUP=<variable> 

This option lets you specify an alternative way to fill Variable_FILLED in the output dataset. Rather than 
using a fill variable, you could fill with “weights of evidence” (WOE) values, which are related to Naïve 
Bayes quantities. GROUP identifies a categorical grouping variable, which allows for group-specific fill 
values and/or WOE coding within bins. 

 

 WOE coding requires a binary supervising variable. 

For a given variable X, we look at each bin to determine how common that bin is for the two groups 
defined by the dependent variable Y. For example, suppose that among the subset of data for which the 
target Y=1, 40% of the learn data fall into a specific bin, while for the Y=0 group the fraction falling into 
that bin is just 20%, then the WOE is based on the ratio 40/20. A way of looking at this is to say that 
knowing that a record falls into a bin tells us that this would have been far more likely for a record with 
Y=1. WOE encoding has been common practice in credit risk scorecard development as a data 
preprocessing step prior to building a predictive model (say with logistic regression). 

Save Output to File 

 AUTOMATE BIN SAVE="filename.ext", SUFFIX=<”text”> 

Normally, one would run the Data Binning process with the goal of saving a new dataset containing the 
transformed versions of the variables. You can configure this via Save Output to File controls. 
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The saved dataset will contain three versions of input data variables selected for binning: 
♦ Original variable: this is just a copy of what you started with. 

♦ Variable_BIN: this is a whole number representing simply a bin number. 0 is always used to represent 
missing values; otherwise, the numbers will simply go from 1 to K, where K is as close as possible to 
the number of bins you requested. The bins will be ordered with 1 representing the lowest values, and 
K the highest values.  

♦ Variable_FILLED: this is a proper numeric representation of the original variable. By default, each bin 
will have been filled with the mean value of the variable for the learn sample records falling into that 
bin. The actual values in this variable are determined by Fill Variable and Coding options. 
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