

Exploring Data

This guide describes the facilities in SPM[®] to gain initial insights about a dataset by viewing and generating descriptive statistics.

© 2018 by Minitab Inc. All rights reserved.

Minitab[®], SPM[®], SPM Salford Predictive Modeler[®], Salford Predictive Modeler[®], Random Forests[®], CART[®], TreeNet[®], MARS[®], RuleLearner[®], and the Minitab logo are registered trademarks of Minitab, Inc. in the United States and other countries. Additional trademarks of Minitab, Inc. can be found at <u>www.minitab.com</u>. All other marks referenced remain the property of their respective owners.

Introduction to Exploring Data

SPM[®] is a comprehensive set of tools to produce predictive, descriptive, and analytical models from datasets of any size, complexity, or organization. In many cases, though, you need to gain better understanding of the data first. The typical challenges an analyst faces when working with an unfamiliar dataset are:

- The quality of the data is not known. No matter how reputable a source of the data is it might still require data cleaning.
- Data dictionary not available or incomplete. The primary role of Variable Name is to identify a column of data. We would like it to convey the purpose and nature of the data too but this might be quite hard to achieve in many cases. Data Technologies (e.g. RDMS) are quite good at enforcing the identity of the column but are pretty indifferent to the descriptive power of the name of a variable.

These challenges usually occur at the beginning of the analysis. In SPM we made sure you have tools to get up and running with new data as soon as possible. Once a dataset is loaded you can browse raw data and obtain simple and elaborate statistics in both tabular and graphical forms.

Opening and Viewing Raw Data

Once you open a dataset, for example, using the **Open** button on the toolbar $\stackrel{\frown}{\longrightarrow}$, data exploring features become available. In this chapter we will work with sample dataset SAMPLE.CSV supplied as part of the SPM installation. It is located in the *Sample Data* folder. Please refer to general SPM documentation about the ways to bring your data into SPM.

To browse raw data select View>View Data from the View menu.

 \checkmark You may simply click on the \blacksquare button in the toolbar.

As a result, the **View Data** window will appear.

	Y1	Y2	Y3	Y4	W	Z1\$	Z2\$	X1
1	0.958566	1	3	1	1	ONE	ZERO	0.631637
2	1.19727	1	3	1	1	THREE	ZERO	0.430213
3	1.9517	1	4	1	1	ONE	ZERO	0.70423
4	0.0831865	1	2	1	1	ONE	ZERO	-0.92009
5	3.31188	1	4	1	1	THREE	minusone	1.8937
6	-0.025492	-1	2	0	2	THREE	ZERO	-0.94630
7	1.09645	1	3	1	1	TWO	ONE	1.4480
8	0.550056	1	3	1	1	TWO	ZERO	0.97337
9	-0.555896	-1	1	0	2	ZERO	ZERO	-0.28376
10	-1.17757	-1	1	0	2	ZERO	minusone	-0.53004
11	1.57481	1	4	1	1	TWO	ZERO	0.75211
12	-0.313311	-1	2	0	2	TWO	ZERO	1.6730
13	-0.010862	-1	2	0	2	THREE	ZERO	1.1862
14	1.64923	1	4	1	1	ZERO	ZERO	0.86449
15	0.882873	1	3	1	1	THREE	ZERO	-0.93439
16	-0.586283	-1	1	0	2	ONE	ZERO	1.032
17	0.680238	1	3	1	1	ONE	ONE	-0.6744
18	1.09655	1	3	1	1	TWO	ONE	-0.48023
19	0.521923	1	3	1	1	THREE	ZERO	1.2890
20	0.617021	1	3	1	1	ONE	ZERO	0.95633

This display is tailored to handle large amounts of data. The grid works in so-called "Virtual Mode". Only current "page" of data and some cached pages are retained in memory and the dataset is queried for more pages on demand.

Sometimes querying the dataset multiple times is not what you want. A good example is browsing content from an RDBMS (SQL Server, Oracle etc). If data access latency is too large, consider extracting the data into a local file in, for example, CSV format before browsing.

Vertical scroll bar has special features to access pages of data. The buttons allow you, from top to bottom to

- Jump to the beginning of dataset.
- Jump one page up.
- Move one record up.
- Move one record down.
- Jump one page down.
- Jump to the end of the dataset.
- ✓ There is a thumb-bar on the vertical scroll bar in the View Data window.

Descriptive Statistics

To examine descriptive statistics of the currently open dataset, select **View>Descriptive Stats...** from the **View** menu. You can also use the **We** toolbar button.

As a result, the **Descriptive Stats Setup** window will appear.

Variable Name	Include	Strata	Weight 📩	🔘 Fast Stats (No Tables, No Quantiles)
T				Operative Stats and Tables
W				Max. distinct values All 1000
X1				to track:
X10				Max. distinct values to display:
X2				
X3				least common 5 values.
X4				
X5				Filter None Character Numeric Details to
X6				None Character Numeric Details to Classic Output
X7				Save to Grove
X8				
X9				
Y1			-	Dataset N 10,000 Selected 17

The window is already configured to obtain detailed Descriptive Statistics of all of the variables in the dataset. You can press the **OK** button right away. The defaults are configured so that computations finish in reasonable time for small to mid-sized datasets. For this run we will use most of the features and explain the controls along the way.

Selecting Variables

The Variable Selection grid allows configuring which variables are included in the computation.

✓ Limiting number of variables to compute by excluding ones you are not interested in can speed up computation. This is especially handy when there are variables with very high number of levels (hundreds and thousands).

To facilitate navigation through the list of variables you can sort them Alphabetically or in File Order. Search functionality is accessible through mouse right-click menu of the grid. Use the **Select** checkbox under the Include column to set and reset multiple checkboxes at once.

Descriptive Stats Setup				X
Variable Name	Include	Strata	Weight 📩	◯ Fast Stats (No Tables, No Quantiles)
Т				Oetailed Stats and Tables
w				Max. distinct values
X1				to track:
X10				Max. distinct values to display:
X2				
X3				least common 5 values.
X4				
X5 Find Ctrl+F				Filter ● None ○ Character ○ Numeric □ Details to
X6				Classic Output
X7				Save to Grove
X8				
Х9				
Y1			-	Dataset N 10,000 Selected 17
Sort: Alphabetically		elect	Nest 🗌 Strata	Records: 10,000 Variables: 17 Cancel OK

Variables can also be assigned special roles.

Strata variables and nested strata

🔄 STRATA <variable>

In addition to full dataset Descriptive Stats, you can request stats for sub-samples identified by levels of a specific variable. In our current dataset variable T defines Learn and Test partitions for analysis. Let's mark T as a Strata variable.

If you have more than one variable listed on the STRATA command, you can specify whether you want nested results with the following option:

🗺 STATS <varlist> / NESTED = YES | NO

Weight variable

```
🔄 WEIGHT <variable>
```

By default each observation is accounted for only once in Descriptive Statistics computations, but you can assign any positive integer or fractional weight to each observation via a Weight variable. Let's specify W as a weight variable.

As a result your Variable Selection should look as follows

				_
Variable Name	Include	Strata	Weight	-
Т		V		1
W	>			
X1	>			
X10	~			
X2	~			
Х3	V			
X4	V			
X5	V			
X6	V			
X7	V			
X8	V			
Х9	V			-
				I

Pre-defined Variable List Filters

There's an alternative way to quickly select a category of variables. The **Filter** group of controls allows you to quickly request

- Only Character variables
- Only Numeric variables.

-Filter		
None	C Character	C Numeric

This setting overrides the selections made in the Variable Selection grid.

Configuring computation process

Computation of Descriptive Statistics can become quite resource-intensive on large and complex datasets. You can tailor the process to get the information you need in an acceptable time.

For our Sample.csv analysis, please select Detailed Stats and set both **Max. distinct values to track** and **Max. distinct values to display** to 9997.

Below each computation process configuration setting is described in more details. Note: the STATS command was formerly named DATAINFO.

Fast Stats (or Brief)

```
🖮 STATS <varlist> / FAST = YES
```

Sometimes all you need is a quick lookup of some numeric statistics (minimum, maximum, mean). Combined with the variable selection feature, you can get this information quickly.

Detailed Stats

```
🖮 STATS <varlist> / FAST = NO
```

In this mode the full set of descriptive statistics is computed. This could be quite performance-intensive even if you select just a few variables with a high number of levels and the dataset is large. There are additional controls to tailor the computation process in this mode.

Operative Stats and Tables						
Max. distinct values to track:	All	1000				
Max. distinct values to display:	All	2000 🔺				
Separate display for least	most and common	5 💌 values.				

Max. distinct values to track

➡ DISCRETE MAX=<n,n>

This setting allows you to limit the number of slots to track distinct values for a variable. If a variable has more than n levels then frequency information on *first n levels encountered* will be available in UI. Such Frequency Tables will be labeled incomplete in the GUI.

Lowering the limit can save significant computation resources, especially when you don't care about tabulation for continuous variables with many distinct levels.

Max. distinct values to display

```
🖮 STATS <varlist> / N=<n>
```


This setting limits how many levels will be displayed in the resulting frequency table. In contrast to **Max. distinct values to track**, this parameter has no effect on the construction of the frequency table for a specific variable. If **Max. distinct values to track** is greater than the number of levels large enough but **Max. distinct values to display** is smaller, you will get all of the stats derived from the frequency table (e.g. number of distinct values) but frequency tables themselves will be printed incomplete. But, also in contrast to **Max. distinct values to track**, *n most frequent levels* will be displayed.

Lower the limit if you do want all of the information on continuous and high-level categorical variables, but you don't need to see full frequency tables in the results window. Showing frequencies for all distinct levels of continuous variables in a large dataset could easily exhaust UI resources.

Separate display for most and least common values

```
 STATS <varlist> / EXTREMES = <n>
```

Some variables with many levels, both continuous and categorical in nature, might have a significant number of observations sharing the same value. While a full frequency table would be expensive to compute and in many cases useless, these most frequent levels might provide some useful insight. This setting allows specifying a cap on how many most and least common values to track.

Saving Descriptive Stats

Let's save the descriptive stats for our dataset. For this, check Save to Grove checkbox and specify a file name. Your Descriptive Stats dialog should look like this:

Variable Name	Include	Strata	Weight 📩	🔘 Fast Stats (No Tables, No Quantiles)
Т	V	V		Operative Detailed Stats and Tables
W	V		V	Max. distinct values
X1	V			to track:
X10	V			Max. distinct values to display: All 9997
X2	V			
X3	V			least common 5 values.
X4	V			
X5	V			Filter
X6	V			Classic Output
X7	V			V Save to Grove
X8	V			C:\data_mining_salford\stats_sample.grv
X9	V			
Y1	V		· ·	Dataset N Selected Variables: 16

Click **OK** to start the computation.

The following controls configure how results of Descriptive Stats computation are saved.

Details to Classic Output

🗺 STATS <varlist> / SILENT = NO

When this setting is ON, the Classic Output window will contain all Descriptive Stats in textual form. This might be useful if you need to compare descriptive stats for several datasets.

Save to Grove

GROVE "<File name>"

Just like other SPM analysis methods, Descriptive Stats can save the results into a Grove file. You can open this file in the GUI at any time to access Descriptive Stats without recomputing them.

Note: Descriptive Stats can also be saved post-computation via the **Save Grove** button in the resulting window.

Browsing Descriptive Stats

Once the computation is done, or if you open a Grove file containing previously computed results, you will see the Descriptive Stats window. Here's what the results window looks like for our example:

id:)	d: Y1 Variables: N Variables: N Variables: W							Ful	l Brief				
	Variable	N	N Missing	% Missing	N Distinct	Mean	Min	Max	1%	2.5%	5%	10%	20%
1	Y1	10,000	0	0.00	Many	0.486335	-1.829327	5.413211					
2	Y2	10,000	0	0.00	2	0.089996	-1	1	-1	-1	-1	-1	
3	Y3	10,000	0	0.00	4	2.399768	1	4	1	1	1	1	
4	Y4	10.000	0	0.00	2	0.544998	0	1	0	0	0	0	
5	w	10.000	0	0.00	2	1.455002	1	2	1	1	1	1	
6	Z1\$	10,000	0	0.00	4								
7	Z2\$	10,000	0	0.00	3								
8	X1	10,000	0	0.00	Many	0.456071	-0.999982	1.999864					
9	X2	10,000	0	0.00	Many	0.441121	-4.447981	5.129159					
10	Х3	10,000	0	0.00	Many	0.001416	-0.999617	0.999696					
1	X4	10,000	0	0.00	Many	0.000934	-4.231447	3.520867					
2	X5	10,000	0	0.00	Many	0.997645	0.000056	7.774165					
13	X6	10,000	0	0.00	Many	0.004096	-4.231447	3.520867					
14	X7	10,000	0	0.00	Many	-0.004039	-3.944356	3.520056					
15	X8	10,000	0	0.00	Many	0.002619	-3.55088	3.705136					
16	Х9	10,000	0	0.00	Many	-0.001943	-3.666984	4.333276					
17	X10	10,000	0	0.00	Many	-0.009624	-3.488724	3.958853					
8	T	10,000	0	0.00	2	0.299266	0	1	0	0	0	0	
4	N Overall / T=0 /	T=1 /					•						

Note the **Full/Brief** switch in the top right corner.

Descriptive Stats in Brief Mode

By default, the display is in Brief mode. You can quickly get an idea of

- How much of the data is missing?
- How many distinct values each column has?
- What are the range and the mean in each column?
- What are the boundaries of specific percentiles?

Note that some variables (e.g. X2, X4) have "Many Values" as the number of distinct levels. This means these variables have too many levels to tabulate given how the run was configured. The maximal number of levels for a frequency table is configured in the Descriptive Stats Setup dialog. If full tabulation is not available some of the stats are zero or empty.

Since we specified the Strata variable, these stats are available both for the overall dataset and for each stratum (T=0 and T=1 sheets in this particular example).

Find: Y	1			✓ Sort: File Or	rder 🗸 N	Variables:
	Variable	Ν	N Missing	% Missing	N Distinct	Mean
1	Y1	7,000	0	0.00	Many	0.4767
2	Y2	7,000	0	0.00	2	0.086
3	Y 3	7,000	0	0.00	4	2.3945
4	Y 4	7,000	0	0.00	2	0.543
5	w	7,000	0	0.00	2	1.456
6	Z1\$	7,000	0	0.00	4	
7	Z2\$	7,000	0	0.00	3	
8	X1	7,000	0	0.00	Many	0.4653
9	X2	7,000	0	0.00	Many	0.4456
10	Х3	7,000	0	0.00	Many	-0.0057
11	X4	7,000	0	0.00	Many	0.0006
12	X5	7,000	0	0.00	Many	0.999
13	X6	7,000	0	0.00	Many	-0.0015
14	X7	7,000	0	0.00	Many	0.0001
15	X8	7,000	0	0.00	Many	0.005
16	Х9	7,000	0	0.00	Many	-0.0001
17	X10	7.000	0	0.00	Many	-0.0132
H 4	► ► Overall T=0	_T=1 /				

You can use the **Find** drop-down on the top pane to lookup a variable by name. To do this, either

- Select a variable from the drop-down list. Variables are always sorted in File Order.
- Start typing a variable name into the box. As you type, the grid will reposition itself to the variable that starts with the sub-string you typed.

The **Sort** drop-down allows resorting variables in the grid, either Alphabetically or in File Order. Navigation tools are quite helpful when the list of variables is large. Other controls on the bottom pane of the window allow you to

- Specify Precision of the numbers in the grid.
- Let the grid figure out the precision by checking the **Auto** checkbox.
- Align content of the cells in the grid.
- Choose the displayed Strata.
- Generate **Graphs**.
- View Commands of the SPM session.
- Score the descriptive statistics.
- Save the contents of the descriptive statistics by clicking Save Grove.

Descriptive Stats in Full Mode

Now, let's switch to Full mode.

0	Descriptive	Stats 3: C:\Program Files\Minital	Salford Predic	ctive Mode	ler 8\Sample	e Data\treenet.csv						
Fin	d: Y1		~	Sort: File	Order	V N Variables: 18			Weight	variable: W		Full Brief
												^
	⊟↑									I		
	€↓	Y1]			Y2			ſ	Y3		
	Ξ	DESCRIPTIVE	1			DESCRIPTIVE				DESCRIPTIVE		
		N		10000		N		10000	[N		10000
		N Missing		0		N Missing		0	[N Missing		0
		N = 0		0		N = 0		0	[N = 0		0
		N <> 0		10000		N <> 0		10000	[N <> 0		10000
		N Distinct Values	N	/lany		N Distinct Values		2		N Distinct Values		4
		Mean		0.48633		Mean		0.089996		Mean		2.3998
		Std. Deviation		1.1822		Std. Deviation		0.996		Std. Deviation		1.0025
		Skewness		1.0121		Skewness		-0.18073		Skewness		0.23537
		Coeff Variation		2.4308		Coeff Variation		11.067	L	Coeff Variation		0.41775
		Cond. Mean		0.48633		Cond. Mean		0.089996		Cond. Mean		2.3998
		Sum of Weights		12945		Sum of Weights		12945		Sum of Weights		12945
		Sum		6295.6		Sum		1165		Sum		31065
		Variance		1.3976		Variance		0.99201		Variance		1.005
		Kurtosis		0.76931		Kurtosis		-1.9673		Kurtosis		-1.0103
		Std. Error Mean		0.012533		Std. Error Mean		0.010559		Std. Error Mean		0.010628
	Ŧ	LOCATION]			LOCATION			[LOCATION		
E	Ŧ	VARIABILITY]			VARIABILITY			[VARIABILITY		
E	Ŧ	QUANTILES]			QUANTILES			[QUANTILES		
	Ξ	FREQUENCY TABLES]			FREQUENCY TABLES	1		[FREQUENCY TABLES		
		Most	% of Total	N	Cum %	Most	% of Total	N	Cum %	Most	% of Total	N
	1	Least				1	54.50	7055	54.50	2	38.85	5029
	2	All (Showing first 100)				-1	45.50	5890	100.00	3	22.90	2965 🗸
н	4 F	Overall / T=0 / T=1 /					<					>
Pre	ecision: 6	5 🗘 🗹 Auto Align: Right	 Strata: 	Overall		~			Grap	Commands Sco	ore	Save Grove

In this mode, Descriptive Stats for a variable are organized in vertical sections. Each variable occupies a column. You can use the **Find** and **Sort** drop-down menus to navigate to a specific variable. For example, type X1 into the **Find** box. As a result you should now see X1 in the left-most column.

O Descriptive	Stats 3: C:\Program Files\Minitab	Salford Pred	dictive Mode	eler 8\S
Find: Y1		```	Sort: File	Order
	Y1]		
	DESCRIPTIVE			
	N		10000]
	N Missing		0	ĺ
	N = 0		0	
	N <> 0		10000]
	N Distinct Values		Many]
	Mean		0.48633]
	Std. Deviation		1.1822	Į
	Skewness		1.0121	Į
	Coeff Variation		2.4308	Į
	Cond. Mean		0.48633	Į
	Sum of Weights		12945	Į
	Sum		6295.6	ł
	Variance		1.3976	Į
	Kurtosis		0.76931	Į
	Std. Error Mean		0.012533	J

O Descriptive	Stats 3: C:\Program Files\Minitab\Salford P	redictive Modeler 8\S
Find: X10		✓ Sort: File Order
⊡↑		
€₹	X10	
	DESCRIPTIVE	
	N	10000
	N Missing	0
	N = 0	0
	N <> 0	10000
	N Distinct Values	Many
	Mean	-0.0096239
	Std. Deviation	0.99354
	Skewness	0.028442
	Coeff Variation	-103.24
	Cond. Mean	-0.0096239
	Sum of Weights	12945
	Sum	-124.58
	Variance	0.98712
	Kurtosis	0.085147
	Std. Error Mean	0.010533

Continue to type in X10. Now the grid scrolled to X10.

Buttons 🗄 and 🗖 near the title of each section allow you to expand and collapse the content. Buttons

■ in the top left corner of the grid are helpful to collapse or expand all the sections.

This display can also be used to get a quick idea about a particular statistic or group of statistics across all the variables. A convenient way to do this is to expand just the section of interest and scroll through all the variables.

The following sections are available.

Fin	d: TARGET		•
	⊡↑		
	 	TARGET	
	Ŧ	DESCRIPTIVE	
	Ŧ	LOCATION	
	Ŧ	VARIABILITY	
	Ð	QUANTILES	
	Ŧ	FREQUENCY TABLES	

Descriptive

Х3]
DESCRIPTIVE	
Ν	10000
N Missing	0
N = 0	0
N <> 0	10000
N Distinct Values	9997
Mean	0.001416
Std. Deviation	0.56366
Skewness	-0.007863
Coeff Variation	398.08
Cond. Mean	0.001416
Sum of Weights	12945
Sum	18.33
Variance	0.31771
Kurtosis	-1.1404
Std. Error Mean	0.0059758

This section contains an extended set of descriptive stats computed by the engine. There are quite a few of them in addition to ones displayed in Brief mode. This section contains the following stats:

- ♦ N
- N Missing
- ♦ N = 0
- N <> 0 (not equal to)
- N Distinct Values
- Mean
- Std. Deviation
- Skewness
- Coefficient Variation
- Conditional Mean
- Sum of Weights
- Sum
- Variance
- Kurtosis
- Std. Error Mean

Note that we don't have Median and Range in the list. The reason is these values are more conveniently represented by the sections below.

Location

LOCATION	
Mean	0.001416
Median	0.005324
Range	1.9993

This section helps you understand the location of the variable on the number line. The relevant stats are grouped together:

- Mean
- Median
- Range

Variability

VARIABILITY	
Std. Deviation	0.56366
Variance	0.31771
Intrqrt Range	0.95079

This section contains stats to describe the dispersion of the variable. It contains the following stats:

- Std. Deviation
- Variance
- Interquartile range

Quantiles

QUANTILES	
100% Max	0.9997
99%	0.97809
97.5%	0.94546
95%	0.89378
90%	0.78021
75% Q3	0.47669
50% Median	0.005324
25% Q1	-0.4741
10%	-0.78628
5%	-0.89654
2.5%	-0.94752
1%	-0.97784
0% Min	-0.99962

This section allows you to assess probability distribution of the variable by showing most important percentiles.

Frequency Tables

FREQUENCY TABL	ES		
Most	% of Total	N	Cum %
-0.029892	0.02	3	0.02
-0.996623	0.02	2	0.04
-0.996505	0.02	2	0.05
-0.995954	0.02	2	0.07
-0.994886	0.02	2	0.08
Least			
-0.999617	0.01	1	0.01
-0.999426	0.01	1	0.02
-0.998722	0.01	1	0.02
-0.998547	0.01	1	0.03
-0.997873	0.01	1	0.04
All			
-0.999617	0.01	1	0.01
-0.999426	0.01	1	0.02
-0.998722	0.01	1	0.02
-0.998547	0.01	1	0.03
-0.997873	0.01	1	0.04
-0.997838	0.01	1	0.05
-0.997696	0.01	1	0.05

This section contains frequency tabulation of the variables. Each row contains a value of the variable along with percentage of total records, number of records, and cumulative percentage. Note that for some variables, the limit on frequency tabulation prevented from capturing the full frequency table.

✓ Note that the stats for T are on Overall pane, but not on T=0 or T=1 pane. The stats for the Strata variable in a particular stratum are degenerate.

€↓	Т]		
Đ	QUANTILES]		
	FREQUENCY TABLES]		
	Most	% of Total	N	Wgt. N
	0	70.00	7000	9071
	1	30.00	3000	3874
	Least			
	1	30.00	3000	3874
	0	70.00	7000	9071
	All			
1	0	70.00	7000	9071
2	1	30.00	3000	3874
1 4 4 1 1	Overall / T=0 / T=1 /			

Scoring Descriptive Statistics

SPM 8 now offers the option to score new data through tabulated descriptive statistics; a useful feature for missing value imputation. Simply click the **Score** button at the bottom of the Descriptive Stats window

to open the Score Data dialog:

re Data			
General	Select Case	s	Advanced
Open Data File C:\Progra	m Files\Salford Systems\Salford Predic	tive Modeler 8.0\Sample	e Data\sample.csv
Grove			
Open Grove File C:\data_r	nining_salford\stats_sample.grv		
Select model to score: Descriptiv	e Stats		•
Save score results			
Save Scores As			
Save all model related va	lues Save all variables on input	dataset to score datas	set
Save Grove As			
Select Specific Model			
Selected:			Optimal Select
Target, Weight and ID Variables	Transit Marthala		
TW	Target Variable		
X1 X10	Select	Clear	
X2 X3	E		
X4 X5	Weight Variable		
X6 X7	Select	Clear	
X7 X8	•		
Sort: Alphabetically	•		Select up to 50 ID Variables Select Remove
		Cancel	Continue Score

In the Data section, choose a new data file that you wish to score. The Descriptive Stats grove from which you clicked the Score button is automatically populated in the Grove section. Finally, choose an output data file in the Save score results section. This particular example (sample.csv) does not contain missing values and will not benefit from the scoring process. However, if you have new data with missing values, this data will be filled in with imputed values from the descriptive statistics (means, by default). For more detailed information on missing value imputation, see the corresponding section of this manual (Data Imputation).

Sorting and Selecting a Keep List

Typically, the first stage of data analysis is exploring the data through descriptive statistics, as seen above. You may wish to continue your analysis with only a subset of these variables based on what you have observed in the Descriptive Stats output. For example, return to the Brief view of the sample.csv statistics:

ind:	Y1		`	Sort: File O	rder 🗸 🗸	N Variables:	16		Weig	ht variable: M	1		Fu	ll Brief
	Variable	N	N Missing	% Missing	N Distinct	Mean	Min	Max	1%	2.5%	5%	10%	20%	25% Q1
1	Y1	10,000	0	0.00	Many	0.486335	-1.829327	5.413211						
2	Y2	10,000	0	0.00	2	0.089996	-1	1	-1	-1	-1	-1	-1	
3	Y3	10,000	0	0.00	4	2.399768	1	4	1	1	1	1	2	
4	Z1\$	10,000	0	0.00	4									
5	Z2\$	10,000	0	0.00	3									
6	X1	10,000	0	0.00	9,997	0.456071	-0.999982	1.999864	-0.967673	-0.924183	-0.854543	-0.725503	-0.494977	-0.37455
7	X2	10,000	0	0.00	Many	0.441121	-4.447981	5.129159						
8	Х3	10,000	0	0.00	9,997	0.001416	-0.999617	0.999696	-0.977842	-0.947522	-0.896544	-0.786277	-0.573377	-0.47409
9	X4	10,000	0	0.00	Many	0.000934	-4.231447	3.520867						
10	X5	10,000	0	0.00	9,995	0.997645	0.000056	7.774165	0.009014	0.025069	0.055131	0.111001	0.226713	0.28944
11	X6	10,000	0	0.00	Many	0.004096	-4.231447	3.520867						
12	X7	10,000	0	0.00	Many	-0.004039	-3.944356	3.520056						
13	X8	10,000	0	0.00	Many	0.002619	-3.55088	3.705136						
14	X9	10,000	0	0.00	8,999	-0.001943	-3.666984	4.333276	-2.317965	-1.94796	-1.631104	-1.290033	-0.826589	-0.66412
15	X10	10,000	0	0.00	9,997	-0.009624	-3.488724	3.958853	-2.316299	-1.960456	-1.647763	-1.269833	-0.839692	-0.67450
16	т	10,000	0	0.00	2	0.299266	0	1	0	0	0	0	0	
c														

Sort the variable list by ascending distinct values by clicking once on the N Distinct column:

ind:	Y1			 Sort: File Or 	der 🗸 I	Variables:	16		Weig	ht variable: M	1		Fu	ll Brief
	Variable	N	N Missing	% Missing	N Distinct	Mean	Min	Max	1%	2.5%	5%	10%	20%	25% Q1
1	Y2	10,000	0	0.00	2	0.089996	-1	1	-1	-1	-1	-1	-1	
2	Т	10,000	0	0.00	2	0.299266	0	1	0	0	0	0	0	
3	Z2\$	10,000	0	0.00	3									
4	Y3	10,000	0	0.00	4	2.399768	1	4	1	1	1	1	2	
5	Z1\$	10,000	0	0.00	4									
6	X9	10,000	0	0.00	8,999	-0.001943	-3.666984	4.333276	-2.317965	-1.94796	-1.631104	-1.290033	-0.826589	-0.66412
7	X5	10,000	0	0.00	9,995	0.997645	0.000056	7.774165	0.009014	0.025069	0.055131	0.111001	0.226713	0.28944
8	X3	10,000	0	0.00	9,997	0.001416	-0.999617	0.999696	-0.977842	-0.947522	-0.896544	-0.786277	-0.573377	-0.47409
9	X1	10,000	0	0.00	9,997	0.456071	-0.999982	1.999864	-0.967673	-0.924183	-0.854543	-0.725503	-0.494977	-0.37455
10	X10	10,000	0	0.00	9,997	-0.009624	-3.488724	3.958853	-2.316299	-1.960456	-1.647763	-1.269833	-0.839692	-0.67450
11	X7	10,000	0	0.00	Many	-0.004039	-3.944356	3.520056						
12	X8	10,000	0	0.00	Many	0.002619	-3.55088	3.705136						
13	X2	10,000	0	0.00	Many	0.441121	-4.447981	5.129159						
14	X6	10,000	0	0.00	Many	0.004096	-4.231447	3.520867						
15	X4	10,000	0	0.00	Many	0.000934	-4.231447	3.520867						
16	Y1	10,000	0	0.00	Many	0.486335	-1.829327	5.413211						
c 📃														

This ability to sort the variable list can be extended to all columns in this window. Now, let's say you only wish to continue the analysis with variables that have very few distinct levels. Highlight the top 6 variables, right-click, and select New Keep List:

nd: 1	/1		✓ Sort: File Or	Sort: File Order V N Variables: 16			Weight variable: W					Full Brief		
	Variable	N	N Missing	% Missing	N Distinct	Mean	Min	Max	1%	2.5%	5%	10%	20%	25% Q1
1	Y2	Сору		0.00	2	0.089996	-1	1	-1	-1	-1	-1	-1	
2	Т			0.00	2	0.299266	0	1	0	0	0	0	0	
3	Z2\$	Add to Report		0.00	3									
4	Y3	Export		0.00	4	2.399768	1	4	1	1	1	1	2	
5	Z1\$	Frequency Dis		0.00	4									
6	х9	New Keep List	- La	0.00	8,999	-0.001943	-3.666984	4.333276	-2.317965	-1.94796	-1.631104	-1.290033	-0.826589	-0.66412
7	X5	10,000	0	0.00	9,995	0.997645	0.000056	7.774165	0.009014	0.025069	0.055131	0.111001	0.226713	0.28944
8	X3	10,000	0	0.00	9,997	0.001416	-0.999617	0.999696	-0.977842	-0.947522	-0.896544	-0.786277	-0.573377	-0.47409
9	X1	10,000	0	0.00	9,997	0.456071	-0.999982	1.999864	-0.967673	-0.924183	-0.854543	-0.725503	-0.494977	-0.37455
10	X10	10,000	0	0.00	9,997	-0.009624	-3.488724	3.958853	-2.316299	-1.960456	-1.647763	-1.269833	-0.839692	-0.67450
11	X7	10,000	0	0.00	Many	-0.004039	-3.944356	3.520056						
12	X8	10,000	0	0.00	Many	0.002619	-3.55088	3.705136						
13	x2	10,000	0	0.00	Many	0.441121	-4.447981	5.129159						
14	X6	10,000	0	0.00	Many	0.004096	-4.231447	3.520867						
15	X4	10,000	0	0.00	Many	0.000934	-4.231447	3.520867						
16	Y1	10,000	0	0.00	Many	0.486335	-1.829327	5.413211						
Precisio	on: 6 🖨 🗹 Aut	o Align: Right	✓ Stratz	a: Overall		~			Gra	aphs	Commands.	. Score	Sav	e Gro

This action opens a new notepad with a KEEP statement followed by the selected variables. From here, it's simple to submit this window to tell SPM which variables you'd like included in the analysis. You can confirm the variable selection by opening the Model Setup window.

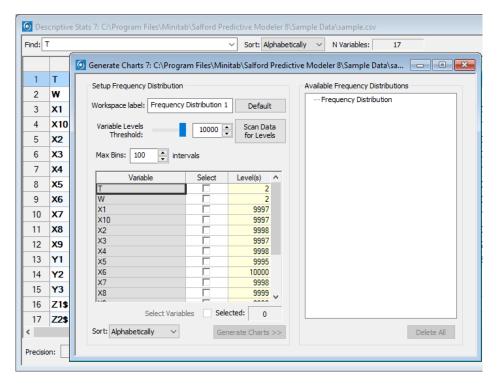
ſ	SPM Notepad: (Untitled 1)	×
	REM Selected variables from: Descriptive Stats 6: C:\Program Files\Minitab\	s. ^
	KEEP Y2, T, Z2\$, Y3, Z1\$	~
	<	>

Exploring Frequency Distributions

You can explore Frequency Distributions of variables in a graphical form. Select **Explore>Frequency Distribution** from the **Explore** menu.

File Edit	View	Explore	Tree	Model	Repo
🖻 🖉	,,, C	Frequ	ency D	istributio	n [

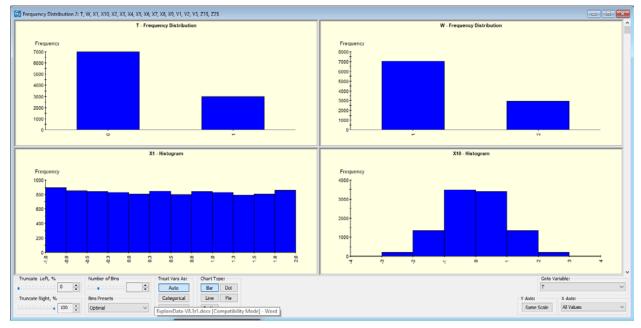
As a result, the Generate Charts dialog will appear:



Setup Frequency Distributio	n		Available Frequency Distribution	ns
Workspace label: Frequen			····· Frequency Distribution	
Threshold:	0			
Max Bins: 100 🔺 in	tervals			
Variable	Select	Level(s) ^		
Т		n/a		
W		n/a		
X1		n/a		
X10		n/a		
X2		n/a		
X3		n/a		
X4		n/a		
X5		n/a		
X6		n/a		
X7		n/a		
X8		n/a 🗸		
240	-			
Select Vari	iables Sele	cted: 0		
Sort: Alphabetically 🗸 🗸		erate Charts >>		Delete All

Note that the Level(s) column is not populated by default. To obtain level information, full Descriptive Stats have to be computed. This is a potentially lengthy operation. By skipping it, you can proceed directly to requesting charts for the variables of interest.

✓ You can bring in level information by clicking the Scan Data for Levels button. This will run Descriptive Stats for all variables and populate the Level(s) column. Variable Levels Threshold control will become available to filter out variables with too many levels.


Since Frequency Distribution is powered by the Descriptive Stats results, you can always navigate from Descriptive Stats to a Generate Charts window via right-clicking or by clicking the **Graphs** button at the bottom of the window:

nd:)	1				Sort: File Or	rder 🗸 N	Variables:	17		We	ight variable:				Full Brie
	Variable	•	Ν	N Missing	% Missing	N Distinct	Mean	Min	Max	1%	2.5%	5%	10%	20%	25% Q1
1	Y1	-	10.000	0	0.00	9,999	0.772821	-1.829327	5.413211	-1.182057	-0.998863	-0.821134	-0.603911	-0.270724	-0.129526
2	Y2	Co	ру		0.00	2	0.411	-1	1	-1	-1	-1	-1	-1	-1
3	Y3	Ade	d to Report		0.00	4	2.6457	1	4	1	1	1	1	2	2
4	w	Exp	ort		0.00	2	1.2945	1	2	1	1	1	1	1	1
5	Z1\$		quency Disti	ibution	0.00	4									
6	Z2\$	Ne	w Keep List		0.00	3									
7	X1		10,000	0	0.00	9,997	0.486268	-0.999982	1.999864	-0.970468	-0.93043	-0.859772	-0.719256	-0.424409	-0.2756
8	X2		10,000	0	0.00	9,998	0.482252	-4.447981	5.129159	-2.536055	-2.106758	-1.709652	-1.228697	-0.667868	-0.44629
9	Х3		10,000	0	0.00	9,997	0.001653	-0.999617	0.999696	-0.979856	-0.952402	-0.90566	-0.803872	-0.599377	-0.49950
10	X4		10,000	0	0.00	9,998	0.003012	-4.231447	3.520867	-2.410606	-2.029433	-1.694385	-1.297139	-0.848682	-0.6771
11	X5		10,000	0	0.00	9,995	0.999022	0.000056	7.774165	0.008971	0.024828	0.054511	0.110679	0.227911	0.29086
12	X6		10,000	0	0.00	10,000	0.003983	-4.231447	3.520867	-2.37719	-2.007306	-1.679288	-1.286154	-0.829832	-0.66246
13	X7		10,000	0	0.00	9,998	-0.002454	-3.944356	3.520056	-2.319022	-1.972106	-1.65205	-1.305656	-0.855053	-0.67539
14	X 8		10,000	0	0.00	9,999	-0.002125	-3.55088	3.705136	-2.38052	-1.988075	-1.640164	-1.281392	-0.841358	-0.67379
15	X9		10,000	0	0.00	8,999	-0.010121	-3.666984	4.333276	-2.322504	-1.961636	-1.635417	-1.301263	-0.835312	-0.67242
16	X10		10,000	0	0.00	9,997	-0.005687	-3.488724	3.958853	-2.314816	-1.938841	-1.641622	-1.263142	-0.837958	-0.67114
17	т		10,000	0	0.00	2	0.3	0	1	0	0	0	0	0	

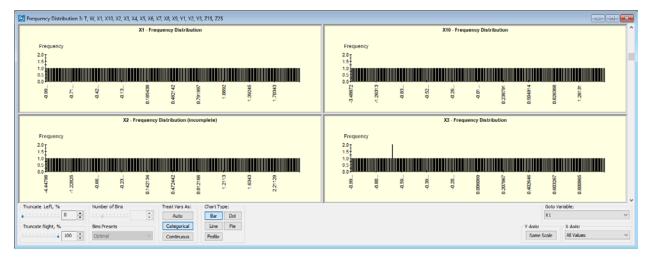
The controls in the Generate Charts window allow you to specify a group of charts you're interested in seeing in a single display. You can specify **Workspace Label** for the group for better reference. If a variable has more than **Max Bins** levels, the values get binned and a histogram is displayed. Otherwise the chart will show a full frequency distribution. A variable selection grid lets you specify variables of interest.

Let's request Frequency Distribution plots for all variables in the dataset. You can select the entire column and mark the **Select** checkbox above to select all individual variables. Once a selection is made, the **Generate Charts** button will be enabled.

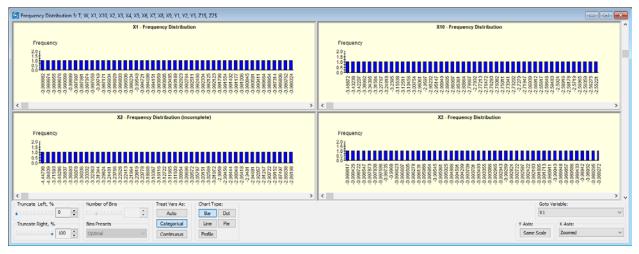
As a result you will see a Frequency Distribution window:

✓ Histograms are incomplete for variables with too many levels (e.g. X10 on the screenshot above). This is due to the cap on number of levels to tabulate during Descriptive Stats. Generate charts dialog uses default caps to ensure acceptable performance. You can configure your Descriptive Stats run and then request a Frequency Distribution display from it.

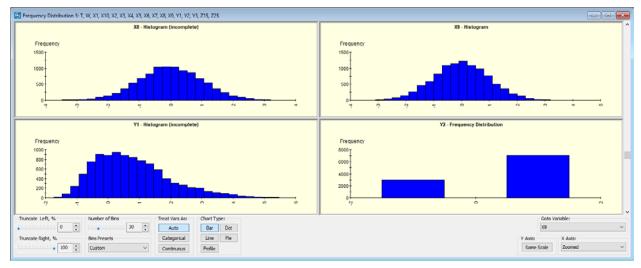
The Generate Charts window that you used to configure the run is still available. It keeps track of all chart groups produced and provides an easy way to navigate to each of them via the right-hand side navigation panel.


Generate Charts 7: C:\Progra	ım Files\Min	itab\Salford P	redictive Modeler 8\Sample Data\sa 🗖 🔲 💌
Setup Frequency Distribution			Available Frequency Distributions
Workspace label: Frequency	Distribution 4	Default	Frequency Distribution Frequency Distribution 3: T, W, X1, X1
Variable Levels Threshold:	10000	Scan Data for Levels	
Max Bins: 100 🔺 inter	vals		
Variable	Select	Level(s)	
Т	V	2	
W		2	
X1	V	9997	
X10	V	9997	
X2	V	9998	
X3	V	9997	
X4		9998	
X5	V	9995	
×6	V	10000	
X7	\checkmark	9998	
×8	V	9999 ,	
Select Variab		cted: 17	< >>
Sort: Alphabetically ~	Ger	erate Charts >	>> Delete All

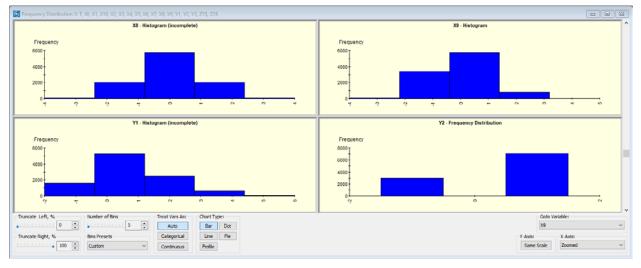
The Frequency Distribution window shows up to four plots at the same time. If there are more than four plots, you can scroll up and down to get to a plot of interest. The **Goto Variable** drop-down box is a handy way to navigate to a variable by name. You can make the Y-axis scale the same for all charts using the **Same Scale** button. These are just a few of the controls on the lower tool panel of the window:


Goto Va	riable:
Т	•
Y-Axis:	X-Axis:
Same Scale	All Values 🔻

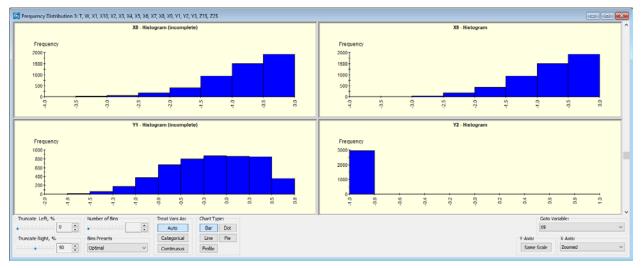
Variables treated as continuous are displayed as histograms. For categorical variables, a full frequency table is displayed. By default, the decision on whether a variable is continuous or categorical comes from the SPM engine. The **Treat Vars As** group of controls lets you override this. In addition to the default, you can opt to treat all variables as either Continuous or Categorical. The dataset we are examining contains quite a few variables with large numbers of levels. If you request to treat them as Categorical, the Frequency Distribution will try to plot each individual level. If you navigate to X1 and click **Categorical** you might see something like this:



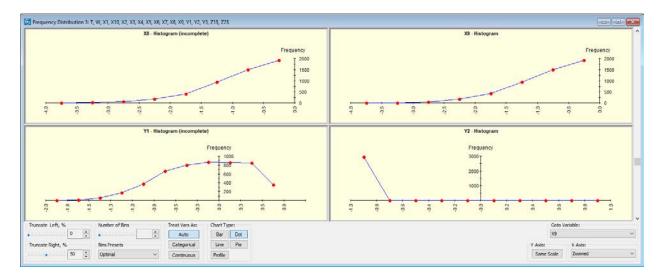
It is apparent that usability of these charts is limited. To improve this, you can switch the **X-Axis** dropdown box from **All Values** to Zoomed. Now you can scroll each chart horizontally and explore the levels of interest:



Let's switch **Treat Vars As** back to **Auto** and navigate to X9. Since X9 and X10 are continuous, **Binning** controls determine how the levels are binned.


Now let's reduce Binning number down to 5.

You can also switch between the following Bins Presets:


- For **Custom** preset, the **Number of Bins** slider defines the number of bins for all continuous variables. This is the default.
- For **Optimal** preset, the number of bins is determined individually for each variable. This is useful when looking side-by-side at variables with radically different distributions.

Let's switch back to **Optimal** number of bins. Note that you're seeing essentially the same histogram for X9. Note that the left-most 6 bins are obscured by much more populated ones to the right. Let's truncate 50% of levels using the **Truncate Right** control. As a result you can now see the left side of the distribution in more details.

Sometimes it is convenient to use an alternative chart type for a histogram. For each chart type, there's a button in the **Chart Type** group of controls. For example, here is the same screenshot with chart type changed to **Dot**.

Exploring Correlated Variables

To compute correlations among the variables in a dataset, select **Explore>Correlation** from the menu or click the shortcut in the toolbar. The Correlation Setup window will appear:

Correlation Setup	×
Variable Name	Include Correlation type
Т	Pearson's product-moment
W	All possible matrices (may be very time consuming)
X1	Data exploring settings
X10	Use only the first several records: 10000
X2	
X3	Print matrices: Default (9 columns)
X4	Filter
X5	None Character Numeric
X6	Save to File
X7	
X8	
X9	
Y1	Save to Grove
Y2	
Y3	
Z1\$	Dataset N Records: 10,000 Selected Variables: 17
Sort: Alphabetically Only Current Model S	elect Variables:

As with the Descriptive Stats setup, you have a variable selection grid with the ability to sort either alphabetically or in file order. Options to the right include:

- Correlation type allows for different computation measures. These include
 - Sum of cross products
 - Covariance
 - Pearson's product-moment

- Normal Euclidean distances
- Skewness
- Variance
- Spearman's rank-order
- Kendal Tau-b rank-order
- Positive matching dichotomous
- Jaccard's dichotomous
- Simple matching dichotomous
- Anderberg's dichotomous
- Tanimoto's dichotomous
- City Block distances
- All possible matrices (may be very time consuming)
- Speed up compute time by only using the first N records
- Size of printed matrices
- Filtering by variable type
- Saving correlation results to a file and/or grove

Continue with the default values by clicking OK.

P	earson's product-	noment mat	rix	Scaling Vectors						
			Pearson's	s product-mon	nent matrix ((17 x 17)				
	Z1\$	Z2\$	Y1	Y2	Y3	w	X1	X2	X3	×4
Z1\$	1.00000									
Z2\$	-0.00163	1.00000								
Y1	-0.10157	0.35767	1.00000							
Y2	0.01630	0.20376	0.68401	1.00000						
Y3	-0.04571	0.32348	0.91074	0.71188	1.00000					
W	-0.01630	-0.20376	-0.68401	-1.00000	-0.71188	1.00000				
X1	-0.00441	0.02914	0.08980	0.09826	0.09363	-0.09826	1.00000			
X2	0.00892	0.01162	0.09536	0.08772	0.09434	-0.08772	0.65658	1.00000		
X3	-0.02417	0.01052	-0.00485	0.00116	-0.00837	-0.00116	0.00160	-0.00727	1.00000	
×4	-0.00651	-0.00305	-0.01338	0.00580	-0.01115	-0.00580	0.01543	0.01419	0.01479	1.00000
×5	0.00320	0.01691	0.01265	0.00399	0.01010	-0.00399	-0.00920	0.00335	0.00142	-0.01152
×6	0.00082	-0.00404	-0.00127	-0.00032	-0.00588	0.00032	0.01420	0.00940	-0.00863	0.00038
X7	0.00669	-0.00876	0.00097	0.00447	0.00319	-0.00447	-0.00157	-0.00833	0.00620	0.00559
×8	-0.01132	-0.00902	-0.00421	-0.01339	0.00354	0.01339	-0.00855	-0.00257	0.01572	-0.00516
×9	0.01354	-0.01620	-0.02470	-0.02342	-0.01756	0 02342	-0.00723	-0.02805	0.01223	0 00500 `
-1.00000	-0.75000 -0.	.50000	-0.25000	0.000	000	0.25000	0.50000	0.75	5000	1.00000
Precision: 5 ≑	Enable color coding	_		1.000	_	deleted:	0			

Tabs with the designated correlation measure(s) will be displayed with a matrix of color-coded values. Darker red indicates a strong negative correlation, white indicates little to no correlation, and darker

purple indicates a strong positive correlation. Options at the bottom of the window include adjusting precision and disabling color-coding. Also reported is the largest absolution correlation present in the table and the number of records deleted. The correlation feature uses strict listwise deletion for missing data; any record with any missing variables will be omitted.

